If you're one of those people whom mosquitoes tend to favor, maybe it's because you aren't sufficiently stressed-out.
Insects have very keen powers of smell that direct them to their targets. But for researchers trying to figure out what attracts or repels the pests, sorting through the 300 to 400 distinct chemical odors that the human body produces has proved daunting.
Insects have very keen powers of smell that direct them to their targets. But for researchers trying to figure out what attracts or repels the pests, sorting through the 300 to 400 distinct chemical odors that the human body produces has proved daunting.
Now scientists at Rothamsted Research in the U.K. have been making headway at understanding why some people can end up with dozens of bites after a backyard barbecue, while others remain unscathed. The researchers have identified a handful of the body's chemical odors—some of which may be related to stress—that are present in significantly larger concentrations in people that the bugs are happier to leave alone. If efforts to synthesize these particular chemicals are successful, the result could be an all-natural mosquito repellent that is more effective and safer than products currently available.
"Mosquitoes fly through an aerial soup of chemicals, but can home in on those that draw them to humans," says James Logan, a researcher at Rothamsted, one of the world's oldest agricultural-research institutions. But when the combination of human odors is wrong, he says, "the mosquito fails to recognize this signal as a potential blood meal."
The phenomenon that some people are more prone to mosquito bites than others is well documented. In the 1990s, chemist Ulrich Bernier, now at the U.S. Department of Agriculture's Agricultural Research Service, began looking for what he calls the "magic compounds" that attract mosquitoes. His research helped to show that mosquitoes are attracted to humans by blends of common chemicals such as carbon dioxide, released from the skin and by exhaling, and lactic acid, which is present on the skin, especially when we exercise. But none of the known attractant chemicals explained why mosquitoes preferred some people to others.
Rothamsted's Dr. Logan says the answer isn't to be found in attractant chemicals. He and colleagues observed that everyone produces chemicals that mosquitoes like, but those who are unattractive to mosquitoes produce more of certain chemicals that repel them.
Besides delivering annoying bites, mosquitoes cause hundreds of millions of cases of disease each year. As many as 500 million cases of malaria are contracted globally each year, and more than one million people die from it, according to the Centers for Disease Control and Prevention. Mosquitoes can also spread West Nile virus, dengue fever, yellow fever and other illnesses.
Currently the most effective repellents on the market often contain a chemical known as DEET, which has been associated in some studies with potential safety concerns, such as cancer and Gulf War syndrome. It also damages materials made of plastic. The federal Environmental Protection Agency has determined that DEET, when used as directed, is safe.
The Rothamsted team set out to get the mosquitoes' viewpoint. The researchers separated human volunteers into two groups—those who were attractive to mosquitoes and those who weren't. They then put each of the volunteers into body-size foil bags for two hours to collect their body odors. Using a machine known as a chromatograph, the scientists were able to separate the chemicals. They then tested each of them to see how the mosquitoes responded. By attaching microelectrodes to the insects' antennae, the researchers could measure the electrical impulses that are generated when mosquitoes recognize a chemical.
Dr. Logan and his team have found only a small number of body chemicals—seven or eight—that were present in significantly different quantities between those people who were attractive to mosquitoes and those who weren't. They then put their findings to the test. For this they used a so-called Y-tube olfactometer that allows mosquitoes to make a choice and fly toward or away from an individual's hand. After applying the chemicals thought to be repellant on the hands of individuals known to be attractive, Dr. Logan found that the bugs either flew in the opposite direction or weren't motivated by the person's smell to fly at all.
The chemicals were then tested to determine their impact on actual biting behavior. Volunteers put their arms in a box containing mosquitoes, one arm coated with repellent chemicals and the other without, to see if the arm without the coating got bitten more.
No comments:
Post a Comment